ARINCHEYAN GERALD

linkedin.com/in/arincheyan 6462708470 aring98@bu.edu www.arincheyan.com

EDUCATION

Boston University

Boston, MA

PhD in Mechanical Engineering, Distinguished Mechanical Engineering Fellowship Graduation Date: May 2025

Boston University Boston, MA

BS in Mechanical Engineering, Cum Laude, Presidential Scholarship Graduation Date: May 2020

SKILLS

Programming Languages: MATLAB, Python: OpenCV, ROS, Tkinter, NumPy, Arduino IDE

Simulation Modelling: Zemax OpticStudio, Abaqus Finite Element Analysis, Ansys Lumerical

Computer Aided Design (CAD): SolidWorks, AutoDesk Fusion 360, PTC Creo, Adobe Illustrator

Manufacturing: Photolithography, Plasma Etching, Ellipsometry, Spin Coating, 3D printing, Laser Cutting, Molding

Soft Skills: Data Analysis, Technical Writing, Project Management, Research Leadership, Experimental Design

RESEARCH EXPERIENCE

Material Robotics Lab, Boston University

Boston, MA

Doctoral Researcher

Sep 2020 - Present

- Developed multimodal soft sensors and haptic feedback systems to improve the safety and efficacy of robotic minimally invasive surgery, funded by a \$680,000 grant from the National Institutes of Health (NIH)
- Conducted *ex vivo* and *in vivo* pre-clinical tests through active collaboration with surgeons at *Brigham and Women's Hospital*, *Harvard Medical School* to improve the clinical compatibility of robots in colonoscopy
- Led two teams of 10 graduate and undergraduate researchers, directing weekly technical progress to ensure successful completion of 4 different research projects
- Authored and presented 7 research papers in leading journals and academic conferences including IROS, Hamlyn Symposium for Medical Robotics, and the Materials Research Society

RESEARCH PROJECTS

Soft Optical Blood Sensor for Colonosocopy

Boston, MA

Material Robotics Laboratory, Boston University

Sep 2020 - Present

- Developed an opto-fluidic sensor for real-time blood detection behind the distal camera of the colonoscope, to reduce severe adverse events (SAEs) caused by bleeding
- Created test protocols and NASA TLX human factor studies to evaluate sensor performance in *ex vivo* clinical trials with 10 endoscopists, resulting in a 95% bleeding detection rate
- Designed a Python/ROS surgical GUI to streamline fluidic system control, effectively integrating sensor signals from an optoelectronic circuit, and reducing necessary microcontrollers and circuitry by 50%
- Fabricated sub-0.3 mm optical waveguides using cleanroom UV photolithography, spin coating, and plasma etching, and optimized waveguide designs to boost light coupling by 30% with Zemax simulations

Soft Sensor and Haptic Feedback for Palpation

Boston, MA

Material Robotics Laboratory, Boston University

Sep 2022 - May 2023

- Integrated a soft optical sensor and pneumatic haptic feedback glove for tumor identification during robotic and remote tissue palpation procedures
- Augmented the sensor onto a UR-5 robot arm to perform remote *in vitro* palpation on a silicone tissue phantom, detecting embedded tumors 2 to 5 mm deep while providing haptic feedback to the surgeon
- Created low cost, disposable optical sensors and silicone actuators (under \$50) via rapid protyping techniques including polymer molding, adhesive bonding, laser cutting, and 3D printing

Soft Robotic Haptic Feedback Glove for Colonoscopy

Boston, MA

Material Robotics Laboratory, Boston University

Sep 2020 - May 2022

- Developed a wearable textile glove that delivers haptic feedback during colonoscopy to limit excessive forces above
 3 N on the colon wall, enhancing patient safety
- Integrated a control system to provide proportional haptic feedback ranging from 0 to 19 N based on sensor input, utilizing pulse width modulation via an Arduino microcontroller, MOSFETs, and pneumatic solenoids.
- Developed an *in vitro* colon simulator and conducted experiments to assess the efficacy of the haptic feedback glove in mock colonoscopy procedures, resulting in a 35% reduction in surgical workload.
- Fabricated material testing fixtures using 3D printing for blocked force characterization and ASTM D751 testing of coated textile pneumatic actuators

Mechanical Engineering Dept., Boston University

Boston, MA

Graduate Teaching Assistant

Sep 2021 - May 2022

- Advised 30+ senior design and product design teams, providing technical mentoring based on design thinking principles and additive manufacturing techniques
- Conducted 3D printer equipment training and held office hours for 50+ students, contributing to their skill development and practical knowledge of rapid prototyping best practices
- Managed and coordinated high volume (20+) weekly 3D print requests for students, ensuring timely completion of final design projects

Boston University Material Robotics Lab

Boston, MA

Undergraduate Research Assistant

Jan 2018 - May 2020

- Engineered a soft robotic sensing sleeve to control excessive forces during colonoscopy, earning a \$10,000 Distinguished Summer Research Fellowship for advancements in minimally invasive surgical robots
- Characterized sensors through experimental protocols utilizing Instron universal testing machines, calibrating incident compressive forces ranging between 0-3 N to optical loss signals from the sensor
- Conducted finite element analysis simulations to model soft actuator inflation under 8 kPa pressure, characterizing the maximum actuator height and its interaction with the colon wall.
- Designed a surgical user interface using MATLAB to qualitatively map the magnitude of incident forces based on real time signal data from 3 sensors

TVS Motor Company Hosur, India

Manufacturing Intern

Jun 2018 - Aug 2018

- Improved competency of engineers and new recruits by developing training modules on technical product information
- Created 2 augmented reality (AR) models of a motorbike transmission and clutch with informational popups, interactive animations, and part disassembly sequences
- Collaborated with factory engineers and identified 5 crucial areas to integrate augmented reality training models within manufacturing processes, including motorbike assembly, inventory management, and machine maintenance

LEADERSHIP EXPERIENCE

Boston University Material Robotics Lab

Boston, MA

Research Mentor

Sep 2020 - Present

- Guided and mentored 8 undergraduate researchers through semester research projects, resulting in a 100% completion rate for all projects.
- Reviewed and revised research proposals submitted by undergraduate and graduate researchers, leading to an 80% funding approval rate
- Created 5+ comprehensive training modules to orient new researchers to lab manufacturing processes and equipment

Boston University UAV Team

Boston, MA

Vice President

May 2019 - May 2021

- Led hands-on training for beginner UAV projects, resulting in a 50% increase in club membership and engagement
- Organized and facilitated 2 hackathons to prototype and test UAV designs, resulting in an increase in project completion rate amongst participating members
- Managed inventory levels and coordinated with vendors to procure materials for UAV kits within a \$100 budget, resulting in cost savings for the club.

PUBLICATIONS

- 1. **Gerald A.**, Palkawong na Ayuddhaya K., McCandless M., Hsu P., Pang J., Mankad A., Chu A., Aihara H., and Russo S., "Ex Vivo Evaluation of a Soft Optical Blood Sensor for Colonoscopy", Device, 2024. <u>Link</u>
- 2. Gerald A., and Russo S., "Soft Haptics for Minimally Invasive Surgery", Nature Reviews Materials, 2024. Link
- 3. **Gerald A.**, Ye J., Batliwala R., Hsu P., Pang J., and Russo S., "Soft Optical Sensor and Haptic Feedback System for Remote and Robot Assisted Palpation", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023. <u>Link</u>
- 4. **Gerald A.**, Batliwala R., Ye J., Hsu P., Aihara H., and Russo S., "A Soft Robotic Haptic Feedback Glove for Colonoscopy Procedures", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. <u>Link</u>
- 5. **Gerald A.**, Batliwala R., Ye J., Hsu P., Aihara H., and Russo S., "A Haptic Feedback Glove for Minimally Invasive Surgery", The Hamlyn Symposium on Medical Robotics, 2022. Link
- 6. **Gerald A.**, McCandless M., Sheth A., Aihara H., and Russo S., "A Soft Sensor for Bleeding Detection in Colonoscopies", Advanced Intelligent Systems, 2022. *Cover Article* <u>Link</u>
- 7. McCandless M., **Gerald A.**, Carroll A., Aihara H., and Russo S., "A Soft Robotic Sleeve for Safer Colonoscopy Procedures", IEEE Robotics and Automation Letters, 2021. Link